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Abstract

A distributed ledger provides a platform on which users can transact
and build applications. The unified environment, that each ledger offers,
allows users to seamlessly interact with all deployed applications. In ad-
dition, it permits information and digital assets to be transferred between
applications. Nonetheless, the blockchain ecosystem comprises multiple
distributed ledgers, each with their own community of users and services.
This fragmentation often results in siloed environments, where users and
applications can interact only within the confines of their ledger. In this
paper, we describe how to allow cross-chain interactions and transfers of
digital assets. In particular, we describe a mechanism for transferring
assets across ledgers in the form of “wrapped” assets. We distill the func-
tionality of this bridge between ledgers and highlight the roles of the key
participants on each stage of the wrapping process.

1 Introduction

With the introduction of Bitcoin [Nak08], an ecosystem of financial services was
born. The principal proposition of the new paradigm that Bitcoin offered was
the decentralization of database infrastructure, on top of which financial appli-
cations could be built. The decade since Bitcoin’s inception saw the creation of
hundreds of systems that followed on its steps and expanded the original design.

Out of all Bitcoin successors, Ethereum [W+14] has arguably been the most
used. Ethereum’s innovation lied in its Turing complete virtual machine (EVM),
which offered the ability to develop applications without programming language
restrictions (as opposed to Bitcoin’s limited scripting language). As a result,
Ethereum has evolved as the primary hub for “Decentralized Finance”, i.e.,
financial applications that run on top of distributed ledgers.1

Despite its success in terms of adoption, Ethereum has demonstrated lim-
itations in terms of performance. On multiple occasions, Ethereum’s network
has been congested to a point of near unusability. At these times, the delay
until transactions are finalized reached many hours and the fees for interacting

1Such applications include exchanges, marketplaces, digital asset creators, etc. For more
information we refer to [WPG+21].
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with the ledger reached tens or even hundreds of USD per transaction. Con-
sequently, a number of systems were created, which offered EVM-compatible
services and aimed at offering better scalability guarantees and acquiring some
of Ethereum’s usage traffic.

With the introduction of these systems though, a new problem came about.
By default, each distributed ledger is oblivious to other ledgers. The maintainers
of a ledger, which run the full nodes, are typically required to keep a copy only
of the ledger (which they maintain). All information recorded on the ledger
should be self-sustained and adhere to the ledger’s validity rules. However, since
the different ledgers form an ecosystem, users often interact with applications
and maintain assets across various ledgers. Therefore, enabling the coordinated
usage and exchange of information and assets from various ledgers is a powerful
mechanism for the evolution of the ecosystem and a qualitative improvement of
the offered services.

In this work, we describe a mechanism for transferring assets across EVM-
compatible ledgers. In particular, we focus on ERC-20 assets,2 i.e., fungible digi-
tal tokens. In the following sections, we describe the creation of “bridges”, which
enable assets to be moved back and forth across compatible ledgers. Specifi-
cally, Section 2 describes the smart contracts that form the two sides of a wrap
bridge, whereas Section 3 highlights the different roles that key parties play in
the system’s execution.

2 A Bridge of Wrapped Assets

In this section, we cover the process of bridging assets across distributed ledgers.
The principal element of the mechanism is creating “wrapped” assets on the
receiving chain, which act as representations of the assets transferred from the
originating chain. For ease of readability, we will denote by LA the originating
chain and by LB the receiving chain. In principle, any EVM-compatible ledger
could serve as originating or receiving.

The act of bridging begins on LA. On this ledger, users (via their addresses
and the public keys that control them) manage digital assets. In this work, we
only consider ERC-20 assets. ERC-20 is the most-used standard for creating
fungible tokens on EVM-compatible ledgers. A token of this type is created and
managed by a smart contract on a specific ledger.3 The distribution of ownership
of an ERC-20 token, meaning which users (accounts or addresses) control which
amounts of the token, is defined in the smart contract that controls the token
and is publicly available. Therefore, by default, each token exists only within
the ledger on which its smart contract lives.

To transfer an amount of an ERC-20 token to a different ledger LB , there
should exist a smart contract (on LB) which will control the transferred to-

2https://eips.ethereum.org/EIPS/eip-20
3Here, when we refer to an ERC-20 token, we refer to all (fungible) tokens of the same

type. Each such (family of) tokens is distinguished by unique identifiers, namely a name and
a symbol.
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kens. This contract should offer the same functionalities defined in the ERC-20
standard (and possibly some extra, bridging-related operations, discussed be-
low). The tokens controlled by this contract are “wrapped” assets. Intuitively, a
wrapped asset is a representation (on LB) of an asset that was originally created
on another ledger (LA).

This representation should be 1-1. Specifically, for a number of wrapped
assets on LB , there should have been deposited to the bridge an equal amount
of original assets on LA. Importantly, a wrapped asset and its (original) coun-
terpart should not be used simultaneously. Therefore, at any point in time,
if the wrapped asset is in circulation (s.t. its owner can transfer or use it in
any way), the counterpart asset should be frozen. Equivalently, when a user
wants to transfer an asset back to its original chain, the wrapped asset should
be destroyed.

After a wrapped ERC-20 smart contract is created, a user should be able to
transfer assets between ledgers. This process is conducted via a “bridge”, which
consists of two smart contracts on either side of the transfer (i.e., on the two
ledgers, LA and LB).

Briefly, a user deposits its tokens to the bridge contract on LA. For each
deposit, a request for creating an equivalent number of wrapped assets on LB

is initiated. In its deposit, the user defines the address on LB , which will
receive the wrapped assets. Following, the bridge contract on LB generates a
number of wrapped assets (equal to the number of deposited original assets)
and assigns them to the user-defined address. The LA bridge contract keeps
the deposited assets in escrow, while the wrapped assets are freely used and
transferred between LB addresses. When a user wants to transfer assets back
from LB to LA, they deposit their wrapped tokens to the LB bridge contract
and, following a similar process as before, the wrapped assets are destroyed and
the original assets on LA are released.

Below, we describe the functionalities of both smart contracts and the details
of transferring assets across the bridge.

2.1 Bridge Functionality

The smart contracts on either side of the bridge share, for the most part, the
same functionality. For ease of reading and without loss of generality, we assume
here that the sending side is ledger LA and the receiving side is LB , therefore
original assets (on LA) are transformed to wrapped assets (on LB); nonethe-
less, the same functionality holds for transforming wrapped assets back to their
original.

First, the contract on LA allows users to deposit assets to it. When a user
deposits assets, the bridging process is initiated. We stress that, after a deposit
is made, a user cannot revert it. Instead, they have to wait until the assets
are transferred to the other side and then initiate a new transfer back, if they
desire.

For each deposit, an event is emitted, containing its details. Specifically, the
event defines: i) id: a unique id for the deposit; ii) N : the amount of tokens;
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iii) αdest: the destination address (which will receive assets on the other side of
the bridge). Special parties, the validators, listen for these events.

After a validator V listens to an event for a deposit on LA, V initiates a
request on the bridge contract on LB . The request contains the necessary infor-
mation about the deposit, i.e., the data defined in the deposit’s event. Following,
other validators attest to the request, by submitting a similar transaction, which
contains the deposit’s information signed by the validator’s key.

After a (protocol-defined) threshold of validators attest to a request, the
request is executed. Specifically, N wrapped assets are created and assigned to
the address αdest.

4

Remark. It is important that, when a deposit is made on either side of the
bridge, the deposit transaction is finalized before the validators approve the cor-
responding request (for the release of the assets on the other side of the bridge).
Alternatively, if a deposit transaction is reverted, e.g., due to a temporary fork
in the ledger, the bridge risks violating one of its invariants, which is that the
amounts of tokens on either side of the bridge should be always equal. Therefore,
the validators should only approve a request, the corresponding deposit of which
is k blocks “deep” in the ledger, where k is the safety parameter of each ledger.
For example, in Bitcoin k is typically 2−6, while for Ethereum k is often 14−70.

Finally, the bridge offers a pausing functionality. The bridge should define
a set of invariants, i.e., conditions that should always hold. If one of these
invariants is violated, e.g., due to a bug, the bridge’s execution should be paused.
Such pause allows human intervention, in order to remedy the causes of the
failure before restarting the service, thus minimizing potential adverse effects.

Although a mostly similar process is used for sending assets over the bridge
in the reverse direction, i.e., depositing wrapped assets on LB and retrieving
original assets, there exist subtle differences in the two cases, detailed next.

Original → Wrapped Assets The bridge contract on side LA handles origi-
nal ERC-20 tokens. As such, it is the point of entry to the system, since wrapped
assets are created only after a deposit of original assets is made. Therefore, this
contract can handle various different tokens, which all live on LA.

5 In addition,
the bridge contract is only a user of the ERC-20 contract. Therefore, while the
wrapped assets circulate on LB , the original assets are simply held in escrow on
the LA contract.

Wrapped Assets → Original The bridge contract on LB handles wrapped
assets. Therefore, it has more control over the creation of the wrapped ERC-20
smart contract (that manages them). Specifically, it is responsible for creating

4If a request concerns tokens that have not been bridged before, its execution also creates
the ERC-20 contract on LB , which will maintain the wrapped assets.

5For each token, a separate wrapped ERC-20 contract will be created on LB during the
first deposit request.
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the wrapped contract upon executing the first request for an ERC-20 token.
The wrapped ERC-20 contract is the same as the ERC-20 contract. Notably,
the contract on LB makes uses of ERC-20’s burning functionality during the
process of sending wrapped assets over the bridge back to LA. Specifically,
instead of keeping the sent assets in escrow (as is done by the LA contract), the
LB contract burns the wrapped assets, whose corresponding original assets are
released at LA.

2.2 Fees

Each operation on a distributed ledger, which is done via a transaction, incurs a
fee. The fees are paid in the ledger’s native currency, e.g., Ethereum transaction
(gas) fees are paid in wei.

In the bridging process described above, there exist two types of transactions.
First, there exist deposit transactions, which are done by the users who own the
assets (original and/or wrapped). In our design, the users are responsible for
paying the deposit gas fees. Second, there exist request attestation transactions,
which are done by the validators on either side of the bridge. To incentivize the
participation of parties as validators, we propose that these fees are also paid -
indirectly - by the users of the bridge.

In particular, when a user deposits N assets on either side of the bridge,
they receive N − f corresponding assets on the other side. The difference f is
the fee paid to the validators. These f assets are kept by the contract. Each
validator V has a claim on these fees, which is proportional to the number of
attestations V made (over all attestations by all validators combined). We note
that these fees are stored in wrapped assets. For example, if a user deposits
original assets on LA, the validator fees will be withheld as wrapped assets on
LB ; equivalently, if a user deposits N wrapped assets, N − f of them will be
burnt (and N − f original assets will be released on the other side) and f of
them will be stored as fees.

The exact computation of the amount f per transaction is outside the scope
of this document. Nonetheless, it should offer some guarantees. The validators
pay fees in two types of tokens (native to the ledgers on either side of the bridge),
but receive the reimbursement in a third type (wrapped assets). One resolution
to this is to use three price oracles, which enable the denomination of these
three assets in a single unit of account (e.g., USD). However, using oracles would
significantly complicate the design and security of the mechanism. Therefore,
an alternative is to trust the bridge’s administrator to define, at all times, a
sufficient level of fees, which is large enough to cover the validators’ expenses.6

Protocol fees Some of the fees collected for reimbursing the validators can
be awarded to the protocol’s designers. The percentage of the split of the fees

6Note that this trust assumption is reasonable, since the administrator is anyway trusted
for core elements of the bridge’s execution (as described below in Section 3).
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(between those claimable by the validators and those awarded to the protocol’s
designers) is also outside the scope of this document.

3 Key Parties

The description of Section 2 outlines a number of parties that play key roles
in the bridge’s operation. In this section, we consider the role and the trust
assumptions that relate to these parties.

3.1 Validators

The primary role in a bridge is that of validators. As described above, validators
are responsible for observing both sides of the bridge, listening for deposits and
attesting to requests. We note that the sets of validators on either side of the
bridge may be different. Therefore, the validators (VLA

) that listen for deposits
on LA and attest to requests on LB might be different than the ones (VLB

)
responsible for the reverse direction.

Validators control the creation and destruction of assets, as well as who
receives assets (on the other side of a deposit). Therefore, the validators should
be trusted to behave honestly. In particular, the validators in VLA

can create
a fake request (on LB), e.g., which does not correspond to a deposit or which
specifies a different address than the one defined in a legitimate deposit on LA.
Therefore, they can create wrapped assets improperly or divert them away from
their legitimate owner. Similarly, the validators in VLB

can release original
assets and divert them to adversarially controlled addresses.

Due to the core role that validators play, it is imperative to carefully choose
i) the parties that act as validators and ii) the threshold of attestations necessary
for executing a request.

3.2 Administrator

The administratorK is the party responsible for completing a set of tasks, which
are elemental to the bridge’s secure operation.

First, K parameterizes the validation process. In particular, it chooses the
parties who can act as validators, as well as the threshold of attestations needed
for a request to be executed (on either side of the bridge).

Second, K defines the fee policy. Specifically, it tunes the level of fees that
users pay during deposits, as well as how these fees are split between the set of
validators and the protocol’s designers.

Third, K is responsible for the pausing process. Specifically, K grants (and
removes) pauser roles and is responsible for unpausing a contract. Therefore,
K should ensure that, after a pause has occurred, its causes have been resolved
and the necessary invariants have been restored.
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Finally, K configures possible usability limits on bridge usage, e.g., imposing
a minimum or maximum number of tokens per deposit.7

Evidently, the administrator plays the most important role in the bridge’s
operation. If K is corrupted, it can disrupt the entire process of the bridge on
all sides. Therefore, it is crucial that its responsibilities are managed by parties
that are trusted to operate as securely as possible.

3.3 Pauser

The final special role is that of the pauser node. This node is parameterized
by a set of invariants, which are conditions that guarantee the safe and secure
operation of the bridge.

The pauser observes all ledgers that participate in the bridge constantly. If,
at some point, one of the invariants is violated for a contract on one side of
the bridge, the node should pause the bridge. After a contract is paused, no
deposits and request executions can be conducted. We note that configuration
operations, such as updating the validators’ sets or the fee mechanism, can be
conducted during a pause period.

The pauser plays an important role, although its control over the contract
is limited. In particular, it can disrupt the bridge’s operation by pausing the
contract without proper cause. This would result in a Denial-of-Service attack,
since the bridge would be unusable until it is unpaused. Nonetheless, the pauser
cannot gain control or divert the user’s assets in any way.

4 Conclusion

In this work we described a mechanism for transferring fungible assets across
EVM-compatible distributed ledgers. The core element of the mechanism is
“wrapped assets”, which are a representation of assets from an originating chain
on a destination chain. The process of moving assets across the ledgers is done
via a “bridge”, which is a pair of smart contracts on either ledgers. The bridge
is operated by a set of validators, who listen to asset deposits by users (on
one side of the bridge) and are responsible for executing the creation of the
corresponding assets (on the other side of the bridge).

4.1 Implementation details

The bridge mechanism has been implemented by Ēnosys, with the implementa-
tion available on GitHub.8 Following, we cover some points of discussion about
this particular implementation.

7We note that, although the lower threshold has some merit, the upper threshold can be
easily bypassed by splitting one’s assets across different accounts. Therefore, unless extra
assumptions are used (e.g., KYC), it is unclear what guarantees a maximum threshold would
provide.

8https://github.com/flrfinance/flr-wraps-contracts
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4.1.1 Validators

The set of validators is split among two committees.9

The first committee consists of two members, who act as the development
team of the bridge. These entities are Ēnosys and Common Prefix. The thresh-
old for reaching a quorum, that is the minimum number of parties in this com-
mittee that need to approve a request before it is executed, is 1 (50%).

The second committee consists of three members, who act as the users and
parties of interest for the bridge. These entities are XDC Community, XDC
Foundation, and NORTSO. The threshold for reaching a quorum in this com-
mittee is 2 (66%).

To execute a request, a quorum on both committees is needed. Therefore,
at least one attestation from the first committee and at least two attestations
from the second committee are needed.

Restrictions The implementation imposes two extra restrictions regarding
the validator set. First, if a validator is removed from either of the committees,
it cannot be added again on either.10 Second, the maximum number of members
on each committee is 128, so the maximum number of validators is 256 in total
(across both commitees).11

4.1.2 Administrator

As discussed above, the administrator has complete control over the bridge and
can completely disrupt its operation and security. In the implementation, the
administrator’s key on each side of the bridge is managed by a Gnosis Safe
multisig, controlled by Ēnosys.12

4.1.3 Deployment Timeline

The tentative deployment timeline of the bridge mechanism is as follows.
The first bridge, which has already been deployed, is between the XDC

testnet (Apothem) and the Flare Network testnet (Coston).
The second bridge, which will be deployed after a sufficient testing period,

will be between the XDC mainnet and Songbird, Flare Network’s “canary” net-
work. At the beginning, this bridge will support a single asset, XDC tokens;
therefore, users on XDC will be able to create and use wrapped XDC on Song-
bird.

9https://github.com/flrfinance/flr-wraps-contracts/blob/master/src/libraries/

Multisig.sol
10https://github.com/flrfinance/flr-wraps-contracts/blob/master/src/libraries/

Multisig.sol#L215
11https://github.com/flrfinance/flr-wraps-contracts/blob/master/src/libraries/

Multisig.sol#L44
12https://gnosis-safe.io
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Following, two bridges are expected to be deployed. The first will be between
Ethereum’s testnet, Goerli, and Flare Network’s testnet, Coston. The second
will be between the Ethereum mainnet and Songbird.

Confirmation times The confirmation times that bridge validators need to
wait, until a deposit is finalized, are as follows:

• XDC uses an instant finality PoS mechanism, where a committee of val-
idators sign blocks and a block is finalized when 2

3 of all validators sign
it; so, the bridge validators need to wait until a deposit is published in a
block with 2

3 signatures.13

• Flare Network uses a variant of Avalanche’s Snowman++ algorithm.14

Although in Flare the election probability depends on FTSO performance
(instead of depending only on stake as in Avalanche), the consensus mech-
anism is the same as the original. Therefore, the confirmation time de-
pends on the parameters k (sample size), α (quorum size) and β (decision
threshold). In Flare Network, k = 20, α = 15, β = 15.15 Therefore, val-
idators need to wait until a transaction is accepted by 15 of 20 parties in
15 consecutive samples.

• Ethereum (PoS) also employs instant finality, based on a BFT mechanism
that requires 2

3 of all validators to sign blocks. Therefore, again the val-
idators need to wait until a deposit is published in a block that is finalized
(meaning signed by 2

3 of all validators).

4.1.4 Protocol Fees

As discussed above, the fees which are paid by the users are split among the
validators and the protocol’s development team. In the implementation, the
latter are kept only on one side, namely on the side of the bridge that lives on
Flare Network.16 The fees on the other side of the bridges to various ledgers
are claimed entirely by the validators.

Specifically, the bridge will charge 1% of the transaction’s value in fees.
These are split equally between protocol fees, which are given to Ēnosys for the
bridge’s development, and the validators. At the system’s onset, each of the 5
validators described above will have an equal claim on validator fees, which is
0.1% of each transaction’s amount.

13https://xinfin.org/xinfin-consensus
14For more details about Avalanche’s consensus and the role of the parameters α, β see:

https://docs.avax.network/overview/getting-started/avalanche-consensus. For a de-
scription of Flare’s variant see: https://docs.flare.network/tech/validators/.

15https://github.com/flare-foundation/go-songbird/blob/

222facde7abb18fa7936594205adaa2346faf973/avalanchego/config/flags.go#L264
16https://github.com/flrfinance/flr-wraps-contracts/blob/master/src/

WrapMintBurn.sol#L85
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