Ermis Protocol Whitepaper

Shresth Agrawal, Nikolas Kamarinakis, and Orfeas Stefanos Thyfronitis Litos

Abstract. NFTs have revolutionized the way digital art is created and
admired, ushering in a new age for artists and fans alike. This transfor-
mation has transcended the digital domain and entered the physical one
via phygital tokens, or simply phygitals. These bridge the gap between
the two domains by tying an NFT with a physical item.

Through the Ermis protocol, Enosys enables the secure redemption of a
phygital in exchange for its associated item with minimal trust. Ermis
provides phygital redemption by tapping into the assurances of the Flare
blockchain, allowing for the first time vendors and buyers to connect
directly via an easy-to-use smart contract. Enosys is not involved in the
physical delivery and does not claim any ownership in the digital domain
at any point.

1 Introduction

The world of art has been irrevocably changed by the advent of non-fungible
tokens (NFTs). These enable the ownership and sale of digital art via blockchain,
tearing down the limitations of the physical world and disintermediating the
process of art sale by removing the need for legal contracts and art galleries.

However, due to the strictly digital nature of blockchains, securely tying a
physical item with an NFT (a.k.a. phygital token) is not straightforward and,
to the best of our knowledge, requires an intermediary that is, to some degree,
trusted. Minimizing this trust while providing a practical, dependable protocol
is a venerable goal, which the Ermis Protocol achieves.

In particular, the Ermis Protocol addresses a crucial step of the lifecycle of
a phygital: it allows the owner to redeem (which usually, but not always, means
to burn) it on-chain and get the corresponding physical item delivered by the
vendor — all without implicating Enosys'. The latter is only involved earlier:
when the vendor is onboarded, Enosys performs KYC and requires proof that
the item is available to ship.

Enosys is an already established party in the blockchain space. It is therefore
well positioned to offer and support the Ermis protocol.

2 High Level Overview of Ermis

2.1 Before the Protocol

To set the stage for the Ermis protocol, two things must have happened ahead
of time. First, the Provider (e.g., the artist) has to have performed KYC with

! https://enosys.global/


https://enosys.global/

Enosys and furnished proof that they have and can deliver the physical item. A
picture or video of the item is sufficient. This is needed to prevent fraudulent or
illegal usage, as delivery of the physical item cannot be enforced on-chain. The
Provider must trust that Enosys will carefully guard its private data and only
disclose it in case of fraud by the Provider. Initially, becoming such a provider
will only be available via submission to the Enosys team, but the plan is to
eventually open Ermis to external vendors.

Second, the Provider must have sold the phygital. Since they are NFTs,
phygitals are tradeable on-chain exactly like any other NFT. As it is a well-
established kind of transaction and independent of Ermis, we will not go into
detail on how a phygital can be sold.

As a result, a potential buyer that wants to own the physical item without
having it at hand (e.g., an art dealer) will be content with having just the
phygital. The phygital may change many hands many times until it is bought by
someone that desires the corresponding physical item (e.g., a fan of the artist).

2.2 Honest Protocol Flow

We will now go over the protocol flow when everything works as intended (see
Figure 1). All communication happens via on-chain transactions. The relevant
messages are emphasized. First, the phygital Redeemer opens a request to re-
deem the phygital, including its postal address in the request, encrypted for the
Provider. Then the Provider decrypts and checks the address. If it is valid, they
accept the request. At that point a countdown starts, within which the Provider
has to fulfill the request. Indeed, the Provider ships the physical item to the Re-
deemer’s address, and does four actions atomically: informs the Redeemer that
the request was fulfilled, provides encrypted tracking information, burns the phy-
gital and creates a Soul-bound Token [?] under the possession of the Redeemer.
Eventually the item is delivered to its Redeemer. With this straightforward pro-
tocol, the redemption is successful. No interaction with Enosys whatsoever has
been necessary.

2.3 Benign Failure Scenarios

Let us now examine the various ways in which redemption can fail. We will first
discuss mishaps after a redemption request is placed, but before it is accepted.
If the Provider is unable to ship or in case the postal address in the redemp-
tion request is malformed, the Provider cannot fulfill and thus has to reject the
request. The phygital returns to the Redeemer.

It is also possible that the Provider does not accept for a long time or that
the Redeemer changes its mind soon after placing the request. In either case
and as long as the Provider has not yet accepted, the Redeemer can close the
request. Once again, the phygital returns to the Redeemer.

Now we will focus on the case of a successful request and accept, but failure
to fulfill. In this scenario, the countdown (which had started when the Provider



Redeemer Provider

On-chain transactions

Open redemption request -
contains encrypted postal
address

|
1
Accept redemption request :
I
I
|

Ship physical item

Fulfill request & burn phygital -
contains encrypted tracking
information

Decrypt tracking information

Receive physical item

Fig. 1. Ermis Protocol



accepted) will eventually reach zero. At that point the Redeemer can ezpire the
request. Just like in the two previous cases, the phygital returns to the Redeemer.
In all three previous failure scenarios no harm has been done, except possibly
for some wasted transaction fees. Indeed both parties are back at their initial
state: the Redeemer has the phygital and the Provider has the physical item.

2.4 Disputes

Unfortunately, there is another, arguably much more problematic, failure sce-
nario: The Provider sends a fulfill transaction without actually shipping the phys-
ical item, thus defrauding the Redeemer by burning the phygital while keeping
the physical item.

Since the blockchain is confined to the virtual realm, it is not straightfor-
ward, and likely impossible, to enforce delivery or revert the destruction of the
phygital in such a case without the help of a trusted third party. This is where
the initial KYC by Enosys becomes relevant: In case of a dispute, either party
can raise the issue to Enosys and pursue adjudication with their aid or even
via traditional legal avenues. Since all communication is visible on-chain and all
messages are signed, the entire transcript can be provided to Enosys with guar-
anteed authenticity. The exact dispute resolution mechanism will be covered in
later revisions of this document. Both the Redeemer and the Provider have to
trust that, as long as they behave honestly throughout the Ermis protocol and
the adjudication process, the dispute will be resolved in their favor by Enosys.

2.5 Trust Assumptions

We here reiterate the ways in which the two parties have to trust Enosys for
clarity.

— The only way in which the Redeemer has to trust Enosys is to resolve any
disputes to their favor as long as the Redeemer behaves honestly.
— The Provider has to trust Enosys in two ways:

e Like the Redeemer, the Provider has to trust that, as long as it is honest
throughout the protocol and fully cooperative with any dispute adjudi-
cation process, Enosys will resolve all disputes to its favor.

e The Provider must trust that Enosys will manage the data gathered at
KYC with the required care: As long as the Provider is honest, their
private data will be stored securely by Enosys, only shared with the
minimum number of parties needed and thoroughly deleted once they
are not useful anymore.

The reputation that Enosys has accumulated in the blockchain and web3 space
indeed justifies bestowing this minimal level of trust.



3 Smart Contract Details

Consider a phygital p (conforming to ERC-7212 or ERC-11553) owned on-chain
by redeemer Alice and the corresponding physical item ¢ (be it a piece of art, a
consumer good, a collectible, etc.) held by provider Bob. The goal of the protocol
is phygital redemption, i.e., that Alice burns p on-chain and Bob ships g to her
physical address and gives her a matching soul-bound token in exchange.

At the heart of this novel protocol is a set of Solidity Smart Contracts*
developed in collaboration with Common Prefix®. The main contract is called
PhygitalRedeemer721 or PhygitalRedeemer1155 depending on the type of the
phygital and inherits from PhygitalRedeemerCommon. We call it PR from now on.
Each phygital corresponds to exactly one PR, which is created by Enosys via a call
to the createRedeemer () method of its long-lived PhygitalRedeemerFactory
contract when the phygital is first created. Upon the creation of PR, the afore-
mentioned countdown, a.k.a. “maximum fulfillment duration” (which prevents
the Provider from delaying fulfillment indefinitely) is also set. It cannot be
changed later. A state machine of PR can be seen in Figure 2.

To initiate redemption, Alice calls PR.openRequest (), specifying her public
key, the ID of p and her encrypted shipping address. A requestID is returned.
As an optimization, a single PR.openRequest () can be used to request multiple
phygitals to be redeemed at once using the exact same protocol, but we will here
focus on a single phygital for simplicity.

After the request is opened there are three possibilities:

— Alice changes her mind and calls PR.closeRequest() with the aforemen-
tioned requestID,

— Bob declines the request by calling PR.rejectRequest () with the requestID
and a free-form reason for rejecting. Possible reasons are, e.g., an invalid
shipping address,

— Bob accepts the request by calling PR.acceptRequest () with the requestID.

In the first two cases, the contract returns to its initial state and p returns to
Alice. In the third case, p is held by the contract and a countdown equal to the
maximum fulfillment duration starts.

Within that time, Bob has to ship the physical item and call PR.fulfillRe-
quest () with the requestID and a free-form field containing encrypted delivery
tracking information. This function stops the countdown, burns the phygital and
creates a soul-bound ERC-721 token owned by Alice.

If the countdown runs out before fulfillment, Alice can then cause expiry by
calling PR.expireRequest () with requestID. In this case the contract returns
once again to its initial state and p returns to Alice. If Alice does not expire the
request, it is still possible for Bob to fulfill, even after the countdown is over.

2 https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
3 https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/
4 https://github.com/flrfinance/phygital-redemptions-contracts

® https://flrfinance.medium.com/introducing-fflabs-cfa8d580441a


https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/
https://github.com/flrfinance/phygital-redemptions-contracts
https://flrfinance.medium.com/introducing-fflabs-cfa8d580441a

Bob :\reject

Alice :(open
Alice :

Bob :|accept Alice :\expire

A,

@Countdown)

Countdown ends

Bob :|fulfill Accepted (time up)

Bob : fulfill

Fig. 2. State Machine for Phygital Redemption Request



Alice can decrypt and use the tracking information to monitor the progress
of the physical item delivery, which should eventually arrive. The protocol is now
complete.

In case Bob calls PR.fulfillRequest () but does not actually ship the phys-
ical item, Alice should open a dispute with Enosys. The exact procedure remains
as of now unspecified.

3.1 Alternative design with one transaction per party

One of the design choices of Ermis is that the provider submits two transactions:
one for accepting and one for fulfilling a request. This choice is made for a number
of user experience-enhancing reasons: Firstly, it ensures that the countdown
starts only after the provider first becomes aware of the request, thus avoiding a
situation in which the request is opened, the countdown almost completes and
only then does the provider check the contract — this can lead to the provider
rushing to fulfill and worsens their user experience. Secondly, the redeemer gets
more fine-grained feedback on the progress of their request. Lastly, this design
ensures that all communication happens on-chain, which both simplifies the user
experience and increases accountability.

The drawback of this design is increased on-chain costs. To avoid this, ac-
ceptRequest and fulfillRequest can be combined in one message. In that
case, the countdown must start when the request is opened (and thus the default
maximum fulfillment duration should be higher) and the physical item should
only be shipped after fulfillRequest is finalized (since it is in a race with a
possible closeRequest by the redeemer). Since tracking information is generated
only after shipping begins, it has to be sent to the redeemer out-of-band. To
achieve this, the redeemer can include an encrypted social media handle in its
call to openRequest. This alternative can be easily implemented if popular. If
the out-of-band communication is non-repudiable and usable by arbitrators in
case of dispute, this alternative design provides exactly the same guarantees as
the original.

4 Future Work

A number of tasks are deferred to future iterations.

— As discussed in Subsection 2.4, dispute resolution will be covered in later
revisions of this document. As Enosys understands and is cognisant of po-
tential risks, they want to outline their intention to restrict Ermis as an
internal tool until the dispute resolution mechanism has been implemented.

— Minting redeemable NFTs will not be available to external vendors upon
launch. The Enosys team will explore initial use cases before B2B integra-
tions occur. Fees will be specified and applied to vendors in later protocol
versions.



— In later versions of Ermis, the user will also be able to choose to collect
their item from select designated locations around the world. A fee would
be applied in such cases.

— As discussed in Subsection 3.1, it is possible to merge the accept and fulfill
transactions to reduce on-chain fees for the Vendor, albeit at a small expense
of usability. The implementation of this alternative will be considered if the
on-chain fees are deemed too high.

— Redemption now is tied to burning the phygital. This, however, may not
fit all use cases. In the future, arbitrary redemption logic (defined upon the
creation of the phygital by its creator) will be enabled. Here are two possible
examples:

e The phygital is not burned, but kept by the Redeemer.
e Multiple phygitals are required to open a redeem request but only one
_ of them is burned.

— Enosys will offer escrow services for the physical item. If a Redeemer does
not trust the Provider to ship the item but instead trusts Enosys for that,
Enosys could first receive the item, signal the Redeemer and only then would
the latter open the request.

5 Conclusion

We have here presented the Ermis Protocol, which enables the redemption of
phygitals. Via this protocol, parties can obtain a physical good that corresponds
to a phygital they own. In the optimistic case, the whole process is completed
in private, i.e., with no interaction with Enosys if both parties are honest. A
minimal amount of trust towards Enosys is needed to ensure correct, effective
and timely dispute resolution in case one party attempts fraud.

We believe that the Ermis Protocol successfully bridges the virtual with the
physical world in a cheap, secure and effective manner, opening new, exciting
avenues for people to interact.



	Ermis Protocol Whitepaper

